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Abstract—Typically, cropped and aligned face images are
required as the input of a face recognition model. In contrast,
popular object detectors based on deep convolutional network
usually locate and classify objects simultaneously, which elim-
inates redundant computation. This work presents a single-
network model called Uniface network for simultaneous face
detection, landmark localization and recognition. We develop
a feature sharing infrastructure for seamlessly integrate both
the detection/localization module and the recognition module. To
facilitate large-scale end-to-end training, we propose a method
by encouraging top-level features of our model to mimic those of
a well-trained single-task face recognition model. Comprehensive
experiments on face detection, landmark localization and veri-
fication tasks demonstrate that the proposed network achieves
competing performance in both face recognition benchmark
(99.0% on LFW for a single model) and face detection benchmark
(86.4% against 2000 false positives on FDDB for a single model).

I. INTRODUCTION

Face recognition is one of the most active research topics
in the area of computer vision. With the development of deep
learning, a series of Convolutional Neural Network (CNN)
based face recognition models have obtained great accuracy
advances on LFW [1]. Current state-of-the-art methods, e.g.,
DeepID [2], Facenet [3], DeepID2+ [4], basically follow
a pipeline: face detection, face alignment and feeding the
cropped and aligned face regions into a deep CNN for face
recognition. Face detection models and face recognition mod-
els, both of which are trained to extract faces’ features for
analysis. Separating them into two models could be computa-
tionally wasting and inefficient. Many general object detectors
[5] [6] solve the computation problem by simultaneous object
detection and classification (Object detection refers to such
simultaneous object detection and classification later in this
paper). Furthermore, works in various fields of machine learn-
ing [7] [8] have shown that due to their inherent correlation,
training similar tasks simultaneously could boost up all their
performance.

Motivated by the above reasons, we propose a face recog-
nition model which does not need cropped and aligned face
images as input and is capable of simultaneous face detection
and recognition. It should be noted that our work does not
aim to use one model to achieve state-of-the-art performance
in both face detection and face recognition, because in face
detection benchmarks, e.g. FDDB [9], WIDER face [10], there
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Fig. 1. Two main ideas we present. Above: we adopt a bottom-up/top-
down architecture to extract sharing features. Below: we propose the landmark
attention to extract more refined features for face recognition.

are many extremely low-pixel and blurred faces whose iden-
tification could hardly be recognized. Excessively pursuing
detection accuracy on this kind of faces could lead to an
overfitting of our model.

One of the most notable difference between object detection
and face detection&recognition is that face recognition is
much more fine-grained. Using existing object detectors in
face detection&recognition directly could lead to a low accu-
racy in face recognition. To tackle this problem, we introduce
a bottom-up/top-down architecture [11] and a landmark
attention mechanism demonstrated in Fig 1 which makes it
possible to train a joint face detection, landmark localization
and face recognition network with competitive performance.
Our model works as follow, a face detector embedded in our
network will propose bounding boxes and landmark coordi-
nates of detected faces. The predicted landmarks and bounding
boxes act as an attention to tell the network where the key
features lie in. With the landmark attention, the network will
further extract more refined features and propose a 128-D
embedding for face verification and identification.

Since few works that train face detection and face recog-
nition simultaneously have been conducted before, hardly are
there large-scale datasets with annotations of both face loca-
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tions and face identifications. While face locations could be
generated by the face detection algorithm, face identification
could hardly be annotated. We adopt a mimic method to
directly learn top-level features produced by a state-of-the-art
single-task model. This makes ground-truth face identification
annotations unnecessary and enables large-scale end-to-end
training for simultaneous face detection and recognition.

II. RELATED WORK

1) Face Recognition.: With the development of deep learn-
ing, multifarious models based on CNN have made a remark-
able accuracy on LFW [1]. Face recognition is one kind of
distance metric learning whose basic idea is to draw features
of the same identity closer and features of different identities
farther. The main differences of these face recognition models
lie in the choices of the loss function. Facenet [3] presents
triplet loss and hard negative exemplars mining. Softmax loss
is combined into face recognition in [12], [4]. To learn more
discriminative features, center loss [13] is proposed. Different
from above ways, we directly set top-level features of a well-
trained model as supervision and regress features of our model
to it.

2) Face Detection.: In the field of general object de-
tection, state-of-the-arts methods could be roughly divided
into two categories, two-stage method [14] [5] and one-stage
method [15] [6]. Two-stage methods, which coarsely propose
a set of candidate boxes and then using a classifier to filter
out the foreground boxes precisely, achieve high accuracy but
are usually time-consuming. In contrast, One-stage methods,
which directly propose the foreground boxes, are usually
faster and simpler. Compared to the general object detector.
Face detector, e.g. [16] [17] [18] [19], usually have shallower
features because compared to the general object, faces have
similar shapes and looks.

3) Multi-task Learning.: Since face detection, landmark
localization and face recognition are done simultaneously,
our model could be classified as multi-task learning [20].
Multi-task learning has been widely applied to many fields
of machine learning. e.g. [21] [22] [23] [19]. These works
demonstrate that inherent correlation between similar tasks
could boost up each task’s performance.

In recent years, various multi-task face-related models have
been proposed. Hyperface [8] combine face detection, land-
marks localization, pose estimation and gender recognition.
[24] presents a model for jointly face attribute analysis and
face detection. However, compared to face recognition, face
attribute analysis is much easier. All-in-one Face [25] presents
a multi-purpose algorithm for simultaneous face detection,
face alignment, pose estimation, gender recognition, smile
detection, age estimation and face recognition. Yet it still
needs face region as an input of the network and it takes an
average of 3.5s to process an image which could be extremely
time-consuming. Our model achieves face detection, landmark
localization and face recognition simultaneously and takes
only around 8ms to process an image.

III. UNIFACE NETWORK

We propose a single, unified CNN model called Uniface
network, which is capable of simultaneous face detection,
landmark localization and face recognition. We present two
novel ideas to make it possible to train a joint face detection,
landmark localization and face recognition in one network:

• We adopt a bottom-up/top-down architecture [11] in
the backbone network. It makes different feature layers
shared properly between face detection and face recogni-
tion.

• We propose landmark attention, which makes the network
focus on the key features of the face. With this, the
network could extract more refined features for face
recognition.

Our network architecture is illustrated in Fig 2. An image
without cropping and alignment is fed into the backbone
network for basic feature extraction. We adopt a bottom-
up/top-down architecture to unify face detection and face
recognition. With the detection results, landmark attention will
be applied to extract refined features of the face, which will be
processed to propose a 128-D embedding for face recognition.

A. Backbone Network.
We construct the backbone network to make features of

different depths shared properly by different tasks so that
we can unify face detection and face recognition into one
single network. First we use a CNN model pretrained on Ima-
geNet [26] to extract basic features from the raw image. In this
work, we choose Inception-v3 [27]. We truncate Inception-v3
before classification layers and add some extra convolutional
layers to form feature maps whose sizes decrease by 2.

B. Bottom-up/Top-down Architecture.
Since the faces we intend to recognize is of multi-scale,

simply using an invariant feature map for recognition could
lead to inaccuracy. We introduce the bottom-up/top-down
architecture [11] and construct it upon the backbone network.

Bottom-up/top-down architecture is first introduced in [11]
to get a high-fidelity mask. We utilize it to unify face detection
and face recognition into a single network and enable multi-
scale face recognition.

In this architecture, the bottom-up pathway will be used
to predict face’s bounding boxes and landmarks and the top-
down pathway will be used to construct a feature map for
face recognition. Since the bottom-up pathway is supervised
by the detection task, different feature layers on the bottom-
up pathway should obtain different scale’s semantics. The top-
down pathway fuses features from each layer of the bottom-up
pathway to construct a feature map Fr containing semantics of
different scales. With this feature map, the recognition module
is capable of recognizing multi-scale faces. In such way, the
detection and recognition can be unified properly into one
single network.

The specific construction process of the bottom-up/top-
down architecture could be recursively formulated as:

F i+1
td = Upsampling(F i

td + F i
bu), i ∈ {1, 2, 3, 4, 5, 6} , (1)
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Fig. 2. Network architecture. An image without cropping and alignment is fed into our network. An Inception-v3 followed by a bottom-up/top-down
architecture is used to extract sharing features. With the detection results, landmark attention will be used to extract refined features of the face, which will
be processed to propose the 128-D embedding.

where F i
td denotes the i-th feature layer of the top-down

pathway, F i
bu denotes the i-th feature layer of the bottom-up

pathway and Upsampling we use here is a nearest neighbor
upsampling. The feature map for face recognition Fr = F 6

td.
In the bottom-up pathway, sizes of feature maps decrease by a
set of pooling layers with a stride of 2. Correspondingly in the
top-down pathway, sizes of feature maps increase with a stride
of 2. For a higher resolution, we apply two extra deconvolution
layers on Fr to scale it to 64× 144× 144. Fr constructed in
this way will be of both high resolution and rich semantics.

C. Detection Module.

The detection module basically follows the paradigm of
SSD [6]. For multi-scale face detection, we utilize the bottom-
up pathway in the backbone network. A set of convolutional
filters are applied on each layer of the bottom-up pathway
to obtain the multi-scale detection results. The kernel size is
3× 3× p for a feature layer with p channels.

In SSD, each feature map cell is associated with a set of
anchor boxes with different aspect ratios and sizes. Selecting
aspect ratios and sizes reasonably is crucial to detection
performance. Bounding boxes of faces have similar aspect
ratios, which means there are fewer candidate aspect ratios. Via
statistics on the training datasets, we find that aspects ratios
of faces are mostly around 0.8. Therefore, we choose aspect
ratios ar ∈ {0.95, 0.8, 0.65}.

For each anchor box, there are (2+ 4+ 10) outputs, which
consist of 2 class(faces and backgrounds) scores, 4 bounding
boxes offsets and 10 landmark localization offsets relative to

the anchor box respectively. During inference, a non-maximum
suppression will be applied to eliminate redundant boxes.
Proposed detection results will then be used to extract refined
features of faces.

D. Landmark Attention.

In our network, the goal of face recognition is to learn an
embedding yi = f(Fr, di) ∈ R128, where Fr denotes the
feature map for landmark attention and di denotes the i-th
face’s detection result. We propose a method called landmark
attention for fine grained face feature extraction. Compared to
ROI pooling [5], landmark attention utilizes face’s landmarks
to extract more refined features of the face.

After the feature map for recognition is constructed, we
utilize the predicted bounding boxes and landmarks to extract
refined features of faces. More specifically, for each detected
face, we first exploit an ROI pooling on the face region
in Fr to produce a pooled region with size 64 × 48 × 48,
which is followed by two conv-relu-pooling layers to produce
a 512-D vector. Besides, the predicted landmarks will be
used to get a fine grained attention. ROI pooling will be
applied on the adjacent areas of each landmark to produce four
64 × 14 × 14 regions. Similarly, after two conv-relu-pooling
layers, four 128-D vectors will be made. These vectors will
be concatenated to form a 1024-D vector, followed by a fully-
connected layer to produce the final 128-D embedding.

E. Training

In our model, four outputs, class scores, bounding boxes
offsets, landmark offsets and identification embeddings will
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be made simultaneously. Accordingly, four kinds of loss will
be made, which we denote by Lcls, Lbb, Llm, Lid respectively
and we use hyperparameters λi to weight each kind of loss.
Total loss is

L =
1

N
(λ1Lcls + λ2Lbb + λ3Llm + Lid). (2)

Next, we will first introduce losses in the detection module
Lcls, Lbb, Llm.

1) Detection Loss.: Our anchor boxes matching strategy is
similar to SSD’s, so they will not be detailed here. Briefly, we
match each ground truth face box to the anchor boxes with
the maximum Jaccard overlap which should be greater than a
threshold. Assuming k anchor boxes matched, the left (M−k)
anchor boxes represent the background, where M denotes the
total number of anchor boxes.
Lcls is the softmax loss between the background and the

face. To avoid imbalance between positive and negative sam-
ples, we select the hardest, which have the highest confidence
scores, 3k background boxes for calculating Lcls. Lbb is
a Smooth `1 loss [14] of deviation of ground truth boxes
relative to matched anchor boxes. Following this idea, Llm is
a Smooth `1 loss of deviation of landmark coordinates relative
to matched anchor boxes.

2) Recognition Loss.: For an image with M faces, its
embedding loss is

Lid =
1

M

M∑
i=1

‖f(Fr, di)− g(xi)‖22 , (3)

where xi denotes i-th face region cropped and aligned from
the original image and g denotes a well-trained embedding
for face recognition. This loss could be regarded as a mimic
loss [28].

The mimic method has been widely used in model com-
pression and acceleration. We apply it in multi-task learning
for two reasons. Firstly, to the best of our knowledge, large-
scale datasets for both face detection and recognition does
not exist currently. With the mimic method, face identification
annotations become unnecessary. Thus, we could train face
detection and face recognition tasks end-to-end. Secondly,
compared to sparate face detection and recognition models, our
model is smaller and runs faster. In other words, our model
could be seen as a compressed model in some way, which
makes mimic method effective.

IV. EXPERIMENTS

To evaluate the recognition ability of our model, we use
LFW [1] as the benchmark of our model. To demonstrate that
our model has the ability to detect faces, we also test it on
FDDB [9]. Furthermore, we design three baseline models (Fig
3) to demonstrate the effectiveness of each key component in
our model.

A. Experiment Settings

We use MS-Celeb(without alignment) and AFLW [29] as
our training datasets. We randomly sample around one million

images from MS-Celeb. Since we conduct mimic method to
optimize the recognition task, ground truth of identity is not
needed. Instead, we crop face regions of each image and
feed the cropped area into a well-trained Facenet [3] model
(with the accuracy of 99.4% of LFW). The proposed 128-D
embeddings will be set as supervision of our model. Since
MS-Celeb does not contain landmark annotations, we apply
MTCNN [19] to get the landmark coordinates of each face.

Our model is implemented with MXNet [30]. All training
and inference are carried out on a single Nvidia Titan X Pascal.
For each input image, we pad it with 0 to a square and resize
it to 300×300. Then, the RGB image is normalized to follow
the standard normal distribution. The training of our model
starts with a learning rate of 0.1. When the loss goes steady,
we adjust the learning rate by dividing it by 10. While the
batch size is 32, it takes around 120k iterations to finish the
complete training.

TABLE I
RESULTS ON LFW.

Methods Images Aligned Networks Accuracy
DeepFace 4M 3D 4 97.35%
DeepID 203K 2D 60 97.45%
DeepID2 203K 2D 25 99.15%

DeepID2+ 290K 2D 25 99.47%
Facenet 260M No 1 98.87%
Facenet 260M Yes 1 99.63%

Ours(Model A) 1M No 1 98.98%
Ours(Model B) 1M No 1 97.93%
Ours(Model C) 1M No 1 97.50%
Ours(Model D) 1M No 1 95.65%

B. Evaluation on Face Recognition

We use LFW as the benchmark of our models. LFW is
a conventional face recognition benchmark, which contains
13233 images of 5749 identities. Following the protocol of
unrestricted, labeled outside data, we use 10-fold cross vali-
dation to calculate the accuracy. For a complete test of our
model, we do not use any external crop or alignment tools to
process the images. The original images are directly fed into
our network. All our models evaluated on LFW are trained on
sampled MS-Celeb.

The primary model achieves the accuracy of 98.983% ±
0.389, which is a competitive performance, especially for
models without extra detectors. By contrast, Facenet [3] us-
ing the fixed center crop achieves the accuracy of 98.87%.
Comparison of models tested on LFW is detailed in Table I.

1) A Robustness Evaluation.: Though our model achieves
impressive performance on LFW, we could still not confirm
that our model has strong generalization ability in various sce-
narios. Since faces in LFW are of similar sizes and positions,
we design an experiment in which we randomly crop or pad
images on LFW so that faces are distributed in various sizes
and various positions. In detail, for each 250 × 250 image is
LFW, we randomly crop or pad at most 60 pixels for each side.
Then we carry out the 10-fold test on this processed dataset.
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Fig. 4. Results on FDDB. The true positive rate of our model is 86.4%
against 2000 false positives.

Our model achieves the result of 98.62%± 0.56. It is proved
to be of great robustness.

C. Evaluation on Face Detection

To validate the detection performance of our model, we train
our model using AFLW dataset and test it on FDDB [9].
FDDB measures the performance of models by computing
an ROC curve by varying the threshold of face scores. We
compare our model with some methods whose results are
presented in FDDB result page. The result is illustrated in
Fig 4.

D. Ablation Studies

To demonstrate the effectiveness of our model, we remove
some key components from our primary model (Model A)
to form the baseline models which are illustrated in Fig 3. To
validate the performance boost brought by multi-task learning,
we disassemble the detection and recognition part (Model B).
We remove the top-down pathway to verify the effectiveness
of feature fusion (Model C). We replace the landmark attention
with conventional ROI pooling to verify the effectiveness of
the landmark attention (Model D).

In Fig 5, we show the descent of recognition loss of the
primary model and baseline models. It is evident that the
primary model has better convergence.

1) The Effect of MTL.: To demonstrate the boost brought
by multi-task learning, we will compare Model A with Model
B. It is noted that we only design experiments to validate
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Fig. 5. Identification losses of the primary model and three baseline
models. We draw losses of the primary model and three baseline models. It
is obviously that the primary model has better convergence.

the boost brought by joint face detection and face recogni-
tion since joint detection and landmark localization has been
proved effective by previous works like [19]. Model B has
a similar structure with Model A, while we separate the
detection and recognition part that they have no correlation
anymore. For the training of Model, we deploy the parameters
exactly the same as Model A. The final result of Model B is
97.93%±0.58 on LFW. Its error rate is around twice as Model
A’s.

2) The Effect of Feature Fusion.: We adopt a bottom-
up/top-down architecture to extract features and fuse features
from different layers. This brings a huge advance in accuracy.
For a fair comparison, we design a model without feature
fusion (Model C). In Model C, we substitute the fused feature
map with a feature map with the shape of 9× 9× 1024. The
rest parts of the network remain unchanged. Its final accuracy
achieves 97.50%± 0.62.

3) The Effect of Landmark Attention.: In Model D We re-
move the landmark attention and only use the bounding boxes
for ROI pooling. To make it fair, we double the number of
channels of the rest recognition module to keep the parameter’s
number unchanged. Its final accuracy is 95.65%±0.85, which
is far behind the performance of Model A. It indicates the huge
boost brought by landmark attention.
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TABLE II
INFERENCE TIME OF DIFFERENT MODELS.

Model Task GPU Speed/FPS
Faceness Face Detection Titan Black 20

MTCNN Face detection and
landmark localization Titan Black 99

All-in-one Face detection, attribute
analysis and recognition Titan X 0.286

Faster-RCNN Object detection Titan X 7

Ours
Face detection,

landmark localization
and face recognition

Titan X 120

E. Inference Time

In our model, low-level features are shared between face
detection and recognition so the network only runs once for
each image while in separate detection and recognition models,
the recognition network runs N times for an image with N
faces. Thus our model has great superiority in speed. We test
the speed of our model with the batch size of 32 on a Titan
X GPU. Comparison with other methods is listed in Table II.

V. CONCLUSIONS

In this paper, we present Uniface network for simultane-
ous face detection, landmark localization and recognition. It
achieves the accuracy of 99.0% on LFW and reaches 120
FPS on a single GPU. We apply bottom-up/top-down archi-
tecture and landmark attention mechanism and validate their
effectiveness in our task. We further validate that the inherent
correlation between face detection and face recognition could
bring a boost for both tasks. For the training of multi-task face
detection and recognition, we set an example of adopting the
mimic method to optimize the recognition task.
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