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1 Temporal Qualitative Results and Comparisons

Please check the supplementary file ‘video result.mp4’ for our video qualitative
results and comparisons. We apply a mean filter to the predicted part transfor-
mations to make the motion smoother.

2 Implementation Details

We trained our entire framework end-to-end with all modules mentioned in the
main paper, i.e., skinning weight predictor, mesh encoder and transformation
decoder. The network was trained with the Adam optimizer using PyTorch. The
batch size was set to 4, which took around 32 GB GPU memory. The learning
rate was set to 10−4. It took 20 hours for the model to converge on an Nvidia
V100 GPU. Since our training data contains characters with different shapes,
we use heterogeneous graph learning from PyTorch Geometric [4] to enable mini
batch training with various number of vertices and mesh connectivities.

3 Network Architecture

We adopted the graph convolution layer from [8] as our basic convolution kernel,
named GCN.

Skinning weight predictor. Given the vertex feature f(V) as input, it is
passed into three consecutive GCN layers which has 64, 128, 256 output channels
respectively. Next, we concatenate the output from all GCN layers and passed
it through a four-layer MLP network which has 256, 256, 128, 40 hidden size
respectively. Finally, the output from MLP is passed through a softmax layer.
Each MLP layer is followed with a ReLu activation layer and 1D BatchNorm
layer.

Mesh Encoder. Mesh encoder has the same three GCN layers and the con-
catenation operation as the skinning weight predictor. Next, the concatenated
feature is passed through a MLP layer with hidden size 256 to get the per-vertex
local feature. Then we aggregate it into a global feature by the ‘max’ operation.
We concatenate the local and global feature as the latent feature Y in the main
paper.



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV

#1103
ECCV

#1103

2 ECCV-22 submission ID 1103

Transformation Decoder. The transformation decoder is composed of a four-
layer MLP network which has 256, 128, 128, 7 hidden size respectively. Each
MLP layer is followed with a ReLu activation layer. The output is in 7-dim
which represents the rotation in terms of 4-dim quaternion and the translation
in 3-dim.

4 Comparison of Mesh Requirement and Generalization

Existing methods for pose or motion transfer have significant amounts of re-
quirements for the input character mesh. Table 1 summarizes differences of the
methods comparing to ours.

Input Mesh Requirements
Pinocchio

[3]
SAN
[2]

NBS
[5]

NKN
[7]

SPD
[9]

Ours

Non-SMPL mesh ✓ ✓ ✓ ✓ × ✓
Non-watertight mesh × ✓ ✓ ✓ × ✓
Non-skeleton mesh ✓ × ✓ × ✓ ✓

Mesh in various topologies × × × × × ✓

Table 1. A comparison of related work across to various input character requirements.

w/o data
augmentation

w/o transformation Ours (full)

PMD ↓
on Mixamo [1]

2.324 3.240 2.393

Table 2. Quantitative evaluation results on additional ablation methods.

5 Ablation Study

We conduct ablation studies on Mixamo dataset [1] to investigate the effective-
ness of each component in our model. Due to the limit space in the main paper,
we show additional ablation studies we did here in the supplementary. w/o
data augmentation is trained without data augmentation, i.e., scaling up or
down some body parts of the characters in dataset [6]. w/o transformation
is trained without the transformation Ts in the main paper. Table 2 shows the
quantitative comparisons in terms of PMD on Mixamo dataset. From this table
and the table in the main paper, our full model achieves relatively good result
among all ablation setups. w/o data augmentation is similar and slightly
better (less than 0.07) than our full model. This is because this quantitative
evaluation is only performed on Mixamo dataset where the character variety
is not high. The data augmentation leads to slight worse numerical evaluation
result but can significantly improve the generalization of the model.
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6 Dataset Train and Test Split

We show our train and test split for the Dataset [1] as a list in separate files
named ‘train split.txt’ and ‘test split.txt’.
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